QUESTION BANK (DESCRIPTIVE) Course & Branch: B.Tech - CSE **Regulation:** R18 UNIT I **Introduction, Finite Automata** 1. a) Consider the below finite automata and check the strings are accepted or not States Input Alphabtes (Q) 0 1 >q0 q1 q3 q1 q0 q2 q3 (q2) q1 q3 q2 q0 (i) 1110 (ii) 0001 (iii) 1010 [L2,2+2+2M]b) Define NFA. What are the differences between DFA & NFA? [L2,4M] 2. Convert the following NFA with ε moves to DFA without ε moves. [L2,10M] a ε ε Start S q r 3. Minimize the following finite automata. [L3,10M] 1 0,1

Siddharth Nagar, Narayanavanam Road – 517583

Subject with Code : FLAT(18CS0509)

QUESTION BANK 2019-20

[L2,10M]

	Present	I/P	2=0	I/P=	=1	
	State	Next State	O/P	Next State	O/P	
	\rightarrow A	С	0	B	0	
	В	А	1	D	0	
	С	В	1	А	1	
	D	D	1	C	0	
 5. a) Write about relations on sets. b) Define Grammar? What are the tuples. c) Define Finite Automaton. d) Show that (0*1*)* = (0+1)*. e) Define Mealy machine and Moore machine. 					[L1,2M] [L1,2M] [L2,2M] [L3,2M] [L2,2M]	
6. a) Discuss Chor	msky's Hiera	archy of form	al languages	5.		[L1,5M]
b) Define NFA	and DFA. Co	onstruct DFA	for the give	n NFA		[L1,5M]
		Q	a	b	7	

4. Convert the following Mealy machine into its equivalent Moore machine.

Q	а	b
→ q0	q2	q0,q1
q1	q1	q0
q2	q0,q1	Φ

Where q2 is final state.

7. a) Define Moore machine? Construct Mealy machine corresponding to Moore machine?

[L2,6M]

States	Next	Output	
(Q)	I/P=0	I/P=1	Output
->q1	q1	q2	0
q2	q1	q3	0
q3	q1	q3	1

b) Explain briefly about DFA and NFA?

[L1,4M]

	Present State	1/1 —a	1/1 -0	
—	\rightarrow A	В	F	
	В	А	F	
	С	G	А	
	D	Н	В	
	Е	А	G	
	*F	Н	С	
	*G	А	D	
	*H	А	С	
s on set nd DFA.	and explain its J Construct DFA	property with an ex for the given NFA	xample A	[L1,3M] [L2,7M]
		Next	state	
		0	1	
	$\rightarrow a0$	a0 a1	a0	

I/P=a

Next State

I/P=b

8. Write down procedure for Myhill- Nerode theorem with a given example. ('*' means final states).

9. a) Define relations on set and explain its property with an example	
b) Define NFA and DFA. Construct DFA for the given NFA	

	Nex	Next state		
	0	1		
$\rightarrow q_0$	q0,q1	q0		
q1	q2	q1		
q2	q3	q3		
(q3)	-	q2		

10. a) Design DFA which accepts even number of 0's over $(0,1)$.	[L6,6M]
b) Explain Chomsky Hierarchy.	[L2,4M]

[L2,10M]

QUESTION BANK 2019-20

Page 3

<u>UNIT II</u> <u>Regular Languages</u>

- a) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)* [L1,5M]
 b) State Arden's theorem and construct the regular expression for the following FA using Arden's theorem. [L1,5M]
- 2. Explain about Arden's theorem, for constructing the RE from a FA with an example. [L1,10M]

3. a) List out the identities of Regular expression.

b) From the identities of RE, prove that

[L1,4M] [L2,6M]

[L6,6M]

- i) 10+(1010)*[^+(1010)*]=10+(1010)* ii)(0+011*)+(0+011*)(01+0100*)(01+0100*)*=01*(010*)*
- 4. a) Convert the given RG to FA
 - $S \rightarrow aA/bB/a/b$
 - $A \rightarrow aS/bB/b$

B→aA/bS

- b) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)* [L3,4M]
- 5. a) Prove R=Q+RP has unique solution, R=QP* [L1,3M]b) Explain about the Arden' theorem, for constructing the RE from a FA with an example [L1,7M]

- 6. Explain how equivalence between two FA is verified with an example. [L2,10M]
- 7. Prove that the language $L = \{a^n b^n | n \ge 1\}$ is not regular using pumping lemma [L2,10M] with procedure.
- 8. a) Construct an equivalent FA for the given regular expression (0+1)*(00+11)(0+1)* [L3,5M]
 b) State Arden's theorem and construct the regular expression for the following FA using Arden's theorem.

[L3,5M]

FLAT

QUESTION BANK 2019-20

9. Write the process of equivalence two FA's? Find whether the equivalence two FA's or not. [L3,10M]

10. Prove that the language L= $\{a^nb^nc^n | n \ge 1\}$ is not regular using pumping lemma. [L3,10M]

<u>UNIT III</u>

Context Free Grammars and Languages

Content 1100 Grunnurs und Lungauges	
1. Write the procedure and Eliminate left recursion from the following Grammar $E \rightarrow E + T/T$	[L2,10]
$T \rightarrow T * F/F$	
$F \rightarrow (F)/id$	
2 a) Explain about derivation and parse trees? Construct the string 0100110 from th	e Leftmost and
Rightmost derivation	e Leitinost and
$S \rightarrow 0S/1 \wedge \Lambda$	
$\Delta \rightarrow 0/1 \Delta / 0B$	
$R \rightarrow 1/0RB$	[I 2 5M]
b) Find the parse tree for generating the string 11001010 from the given grammar	[L2,5M]
s $\rightarrow 18/0.4$	[12,3]
$3 \rightarrow 1/1 S/0 A A$	
$R \rightarrow 0/0S/1BB$	
3 a) Define Ambiguous grammar	EL 2 4MI
b) Pamova L aft requiring from the grammar S-Sah/T	[L2,4]
b) Remove Left recursion from the grammar $3 73a0/1$	
$E \rightarrow E_0/C$	
1° 7° 4° 3° Explain L off recursion and L off factoring	$\begin{bmatrix} L2,0WI \end{bmatrix}$
4. a) Explain Left fector from the grammer $A \rightarrow abB/aB/adg/adgB/adfB$	$\begin{bmatrix} L3, 4M \end{bmatrix}$
5. Simplify the following context free grammar (Here A stands for onsilon(c))	$\begin{bmatrix} L3,0M \end{bmatrix}$
S. Simplify the following context free grammar. (frete, 77 stands for epsilon(e)).	[L4,10[1]]
$T \rightarrow 2Tb \Lambda$	
$I \rightarrow c I \parallel \Lambda$	
$V \rightarrow V O M$	
6 Convert the following grommer into Graibach normal form	
o. Convert the following grammar into Greibach hormar form. $S \rightarrow A A/a$	[L4,10M]
A = 55/0	
b) Convert the following grammer into CNF?	[L3,4M]
b) Convert the following grammar into CNF. $S \rightarrow b \Lambda / a P$ $\Lambda \rightarrow b \Lambda \Lambda / a S / a P \rightarrow a P P / b S / a$	[L3,014]
S = 70 A/dD $A = 70 A/dS/d$ $D = 7 dDD/0S/d$.	
i) Useless symbol. ii) Null production iii) Unit productions	
b) Explain the alogue properties of context free languages	
b) Explain the closure properties of context free languages.	[L3,4M]
9. a) Keniove the unit production from the graninar $S \rightarrow A D = A \rightarrow E = D \rightarrow C = C \rightarrow D \rightarrow b = E \rightarrow c$	
$S \neq AB$, $A \neq E$, $B \neq C$, $C \neq D$, $D \neq 0$, $E \neq a$	[L3,4M]
b) Remove \in productions from the grammar	
$S \neg ABaC, A \neg BC, B \neg D / (\xi, C \neg D / (\xi, D \neg C))$	[L3,6M]
10. what is mean by simplifying grammar? Remove the Unit productions from the	
C = C + C + A + A + A + A + A + A + A + A +	[L3,10]VI]
57 a50, 57A, A7CAd, A7Ca	

<u>UNIT IV</u> <u>Pushdown Automata</u>

1.	a) Construct a PDA which recognizes all strings that contain equal number of 0's	and 1's.
	1) A DDA is many more failthan a finite sector material lastification and	[L2,8M]
r	b) A PDA is more powerful than a finite automaton. Justify this statement.	[L2,2]VI]
۷.	Construct FDA from the following Grammar. $S \rightarrow aB$	
	$B \rightarrow hA/h$	
	$A \rightarrow aB$	[L2.10M]
3.	Construct PDA from the following Grammar	[,]
	S→0BB	
	B→0S/1S/0	[L2,10M]
	Show an ID for the string 010000 is generated for PDA?	
4.	Construct a PDA to accept the language $L=\{WW^R / W \in (a,b)^*\}$ by empty stack a	und
	final state.	[L5,10M]
5.	a) Construct an equivalent PDA for the following CFG	[L3,7M]
	S→aAB bBA	
	A→bS a	
	$B \rightarrow aS \mid b$	
6	b) Explain the informal introduction and formal definition of PDA.	[L2,3M]
6.	a) Define Instantaneous description (ID) in PDA.	[L2,5M]
7	b) Explain about the graphical notation of PDA.	[L2,5M]
7.	a) Write the process for convert PDA into an equivalent CFG.	[L4,4M]
	b) Convert the following PDA into an equivalent CFG.	[L4,6M]
	$\delta(\mathbf{q}_0, \mathbf{a}_0, \mathbf{z}_0) \rightarrow (\mathbf{q}_1, \mathbf{z}_1 \mathbf{z}_0)$	
	$\delta(\mathbf{q}_0,\mathbf{b},\mathbf{z}_0) \rightarrow (\mathbf{q}_1,\mathbf{z}_2\mathbf{z}_0)$	
	$\delta(\mathbf{q}_1, \mathbf{a}, \mathbf{z}_1) \rightarrow (\mathbf{q}_1, \mathbf{z}_1 \mathbf{z}_1)$	
	$\delta(q_1,b,z_1) \rightarrow (q_1,\lambda)$	
	$\delta(\mathbf{q}_1,\mathbf{b},\mathbf{z}_2) \rightarrow (\mathbf{q}_1,\mathbf{z}_2\mathbf{z}_2)$	
	$\delta(\mathbf{q}_1, \mathbf{a}, \mathbf{z}_2) \boldsymbol{\rightarrow} (\mathbf{q}_1, \lambda)$	
	$\delta(q_1, \lambda, z_2) \rightarrow (q_1, \lambda) //$ accepted by the empty stack.	
8.	a) Define push down automata? Explain acceptance of PDA with empty sta	ack. [L2,5M]
	b) Define Instantaneous description (ID) in PDA.	[L2,5M]
9.	a) Explain about the graphical notation of PDA.	[L2,4M]
	b) Construct an equivalent PDA for the following CFG.	[L3,6M]
	S→aAB bBA	
	A→bS a	
	$B \rightarrow aS \mid b.$	
10	. Construct a PDA to accept the language $L = \{a^n b^{2n}, n \ge 1\}$ by empty store and	
	final state.	[L5,10M]

<u>UNIT - V</u> Turing machines & Undecidability

1.	. Construct a Turing machine which multiplies two unary numbers.				[L1,10M]		
2.	Write short notes on						
	i) Instantaneous	Description of TM	i) Linear Bounded Au	itomata	[L5,10M]		
3.	Construct a Turing mac	hine that recognizes the	he language $L = \{a^n b^n, $	$n>1$ }. Show a	n ID for the		
	string 'aaabbb' with tap	e symbols.			[L2,10M]		
4.	Explain conversion of re-	egular Expression to 7	TM with example.		[L3,10M]		
5.	Explain the various type	es of Turing machine.			[L3,10M]		
6.	Explain Universal Tur	ing machine.			[L3,10M]		
7.	Design a Turing Machir	ne to accept the set of	all palindrome over {	0,1}*. Draw th	ne Trasition		
	diagram for the same.				[L6,10M]		
8.	Construct a Turing mac	hine that recognizes the	he language $a^n b^n c^n$.		[L3,10M]		
9.	9. a) Define PCP and MPCP.						
	b) Find the PCP solution	n for the following set	zs.		[L4,6M]		
		А	В				
		10	101				
		01	100				
		0	10				
		100	0				
	1 010						
10	a) Define PCP. Verify w	whether the following	lists have a PCP solut	ion.	[L3,7M]		

$$\binom{abab}{ababaaa}$$
, $\binom{aaabbb}{bb}$, $\binom{aab}{baab}$, $\binom{ba}{baa}$, $\binom{ab}{ba}$, $\binom{aa}{a}$.

b) Describe Turing reducibility?

[L3,3M]